|
|||||
| Year/Semester of Study | 1 / Spring Semester | ||||
| Level of Course | 3rd Cycle Degree Programme | ||||
| Type of Course | Optional | ||||
| Department | MATHEMATICS (DOCTORATE DEGREE) | ||||
| Pre-requisities and Co-requisites | None | ||||
| Mode of Delivery | Face to Face | ||||
| Teaching Period | 14 Weeks | ||||
| Name of Lecturer | SEZER SORGUN (ssorgun@nevsehir.edu.tr) | ||||
| Name of Lecturer(s) | |||||
| Language of Instruction | Turkish | ||||
| Work Placement(s) | None | ||||
| Objectives of the Course | |||||
| The purpose of this lesson is to comprehensive subjects which are given to students. | |||||
| Learning Outcomes | PO | MME | |
| The students who succeeded in this course: | |||
| LO-1 |
PO-1 Students can design an original issue and explore new, different and / or comprehend complex issues. PO-3 Students will be dominated by current issues in mathematics. PO-15 Be able to set up and develope a solution method for a problem in mathematics independently, be able to solve and evaluate the results and to apply them if necessary. |
Examination |
|
| PO: Programme Outcomes MME:Method of measurement & Evaluation |
|||
| Course Contents | ||
| Polynomials, Modules, vector spaces, solvable groups, symmetric functions, field extensions, splitting fields, separable closures, normality, Galois groups of polynomial, Finite fields and its applications. | ||
| Weekly Course Content | ||
| Week | Subject | Learning Activities and Teaching Methods |
| 1 | Polynomials | mutual discussion |
| 2 | Modules | mutual discussion |
| 3 | Modules | mutual discussion |
| 4 | vector spaces | mutual discussion |
| 5 | solvable groups | mutual discussion |
| 6 | symmetric functions | mutual discussion |
| 7 | field extensions | mutual discussion |
| 8 | mid-term exam | |
| 9 | field extensions | mutual discussion |
| 10 | splitting fields | mutual discussion |
| 11 | separable closures | mutual discussion |
| 12 | normality, Galois groups of polynomial | mutual discussion |
| 13 | normality, Galois groups of polynomial | mutual discussion |
| 14 | Finite fields and its applications. | mutual discussion |
| 15 | Finite fields and its applications. | mutual discussion |
| 16 | final exam | |
| Recommend Course Book / Supplementary Book/Reading | ||
| 1 | Scott W.R. Group Theory, Prentice-Hall Inc. New Jersey,1964 | |
| 2 | Thomas W. Hungerford, Algebra, University of Washington, 1982 | |
| 3 | John B. Fraleight, A First Course in Abstract Algebra, University of Rhode Island, 1982 | |
| Required Course instruments and materials | ||
| Books | ||
| Assessment Methods | |||
| Type of Assessment | Week | Hours | Weight(%) |
| mid-term exam | 8 | 2 | 30 |
| Other assessment methods | |||
| 1.Oral Examination | |||
| 2.Quiz | |||
| 3.Laboratory exam | |||
| 4.Presentation | |||
| 5.Report | |||
| 6.Workshop | |||
| 7.Performance Project | 7 | 2 | 10 |
| 8.Term Paper | 14 | 2 | 10 |
| 9.Project | |||
| final exam | 16 | 2 | 50 |
| Student Work Load | |||
| Type of Work | Weekly Hours | Number of Weeks | Work Load |
| Weekly Course Hours (Theoretical+Practice) | 3 | 14 | 42 |
| Outside Class | |||
| a) Reading | 2 | 14 | 28 |
| b) Search in internet/Library | 2 | 14 | 28 |
| c) Performance Project | 3 | 7 | 21 |
| d) Prepare a workshop/Presentation/Report | 0 | ||
| e) Term paper/Project | 3 | 7 | 21 |
| Oral Examination | 0 | ||
| Quiz | 0 | ||
| Laboratory exam | 0 | ||
| Own study for mid-term exam | 3 | 8 | 24 |
| mid-term exam | 2 | 1 | 2 |
| Own study for final exam | 3 | 8 | 24 |
| final exam | 2 | 1 | 2 |
| 0 | |||
| 0 | |||
| Total work load; | 192 | ||